Section 5.2: Synthetic division
\#1-10:
a) Perform the division using synthetic division.
b) if the remainder is 0 use the result to completely factor (the dividend is the numerator or the polynomial to the left of the division sign.)

1) $\frac{3 x^{3}-17 x^{2}+15 x-25}{x-5}$
(a)

${ }^{5}$| 3 | -17 | 15 | -25 |
| ---: | ---: | ---: | ---: |
| 1 | 15 | -10 | 25 |
| 3 | -2 | 5 | 0 |

$$
\frac{3 x^{3}-17 x^{2}+15 x-25}{x-5}=\underset{(R=0)}{3 x^{2}-2 x+5}
$$

lb) $3 x^{3}-17 x^{2}+15 x-25=(x-5)\left(3 x^{2}-2 x+5\right)$
($3 x^{2}-2 x+5$ is prime)
\#1-10:
a) Perform the division using synthetic division.
b) if the remainder is 0 use the result to completely factor the dividend (the
dividend is the numerator or the polynomial to the left of the division sign.)

$$
\begin{aligned}
& 3 a)^{\frac{4 x^{+2+x^{2}-9 x-18}}{x+2}-2 \left\lvert\, \begin{array}{rrr}
4 & 8 & -9 \\
-8 & -18 & 18 \\
-8 & 0 & -9 \\
\hline 4 & 0
\end{array}\right.} \begin{array}{r}
\frac{4 x^{3}+8 x^{2}-9 x-18}{x+2}=4 x^{2}-9 \\
(R=0)
\end{array}
\end{aligned}
$$

Bb)

$$
\begin{array}{r}
4 x^{3}+8 x^{2}-9 x-18=(x+2)\left(4 x^{2}-9\right) \\
=(x+2)(2 x+3)(2 x-3))
\end{array}
$$

\#1-10
a) if the remainorm the division using synthetic division
dividend is the numerator or the polynomial to the lefter the dividend (the
(he division sign.)
$5 \frac{\pi x+1 c^{2}-2 n}{x-8} 613-16 \quad 0-72$
Sa)

$\frac{3 x^{3}-16 x^{2}-72}{x-6}=3 x^{2}+2 x+12$
$(R=0)$

5b) $3 x^{3}-16 x^{2}-72=(x-6)\left(3 x^{2}+2 x+12\right)$
This is
dividend is the numb is 0 use the result to completely factor the dividend (the

$$
\begin{aligned}
& \text { 7) }\left(5 x^{2}+6 x+8\right)=(x+2) \quad \text { d } 0 x^{2} \\
& \text { aa) } \left.-2 \left\lvert\, \begin{array}{ccc}
5 & 0 & 6 \\
\hline & 8 \\
-10 & 20 & -52
\end{array}\right.\right] \begin{array}{llll}
5 & -10 & 26 & -44
\end{array} \\
& \frac{5 x^{3}+6 x+8}{x+2}=5 x^{2}-10 x+26=-44 \\
& \text { OR } 5 x^{2}-10 x+26 \\
& -\frac{44}{x+2}
\end{aligned}
$$

Tb) Skip part b Since Remainder not o
dividend is the numerator or the polynomial to the left of the division sign.)

$$
\left(x^{3}-27\right) \div(x-3)=x^{2}+3 x+9
$$

qb) $x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)$
prime
a) use your graphing calculator, or the rational root theorem to find a x-intercept of the polynomial
b) use synthetic division to completely factor the polynomial
c) Use your answer to part a to solve $f(x)=0$
11) $f(x)=x^{3}+2 x^{2}-5 x-6$

Ila) $x=-3$ or 2 or -1
ib)

$$
\begin{gathered}
-3 \begin{array}{cccc}
1 & 2 & -5 & -6 \\
-3 & 3 & 6
\end{array} \\
x^{3}+2 x^{2}-5 x-6=(x+3)\left(x^{2}-x-2\right) \\
=(x+3)(x+1)(x-2)
\end{gathered}
$$

(ic) $f(x)=0$

$$
\begin{array}{cc}
(x+3)(x+1)(x-2)=0 \\
x+3=0 & x+1=0 \\
x-2=0 \\
x=-3 & x=-1 \quad x=2 \\
& x=-3,-1,2
\end{array}
$$

a) use your graphing calculator, or the rational root theorem to find a x-intercept of the polynomial
b) use synthetic division to completely factor the polynomial
c) Use your answer to part a to solve $f(x)=0$
13) $f(x)=2 x^{3}-13 x^{2}+24 x-9$

13a) $x=3$
(Bb)

$3	$	$\left[\begin{array}{ccc}2 & -13 & 24 \\ \hline 6 & -91 & 9 \\ 2 & -7 & 3\end{array}\right.$	0

$$
2 x^{3}-13 x^{2}+24 x-9=(x-3)\left(2 x^{2}-7 x+3\right)
$$

factor

$$
\begin{aligned}
& \text { or } 2 x^{2}-7 x+3 \\
&=\left(2 x^{2}-6 x\right)(-1 x+3)=(x-3)(2 x-1)(x-3) \\
&=\left.2 x(x-3)^{2}(2 x-3)-1\right)(x-3) \\
&=(x-3)(2 x-1)
\end{aligned}
$$

13c) $f(x)=0$

$$
\begin{aligned}
& (x-3)^{2}(2 x-1)=0 \\
& \begin{array}{lll}
x-3)(x-3)(2 x-1)=0 \\
x-3=0 & x-3=0 & 2 x-1=0 \\
x=3 & x=3 & \quad 2 x=1
\end{array} \quad x=3, \frac{1}{2}
\end{aligned}
$$

\#11-20:
a) use your graphing calculator, or the rational root theorem to find a x-intercept of the polynomial
b) use synthetic division to completely factor the polynomial
c) Use your answer to part a to solve $f(x)=0$
15) $f(x)=6 x^{3}-29 x^{2}-62 x+120$

15a) $x=6$

$$
\begin{aligned}
& \text { 15b) } \begin{array}{l}
1 \text { 15 } \\
66^{6} \begin{array}{rrr}
-29 & -62 & 120 \\
36 & 42 & -120
\end{array} \\
\begin{array}{c}
6 \\
6
\end{array}-20 \\
6 x^{3}-29 x^{2}-62 x+120=(x-6)\left(6 x^{2}+7 x-20\right) \\
\text { factor } 6 x^{2}+7 x-20
\end{array}=(x-6)(3 x-4)(2 x+5)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(6 x^{2}-8 x\right)+(15 x-20)^{2} \\
& =2 x(3 x-4)+3(3 x-4) \\
& =(3 x-4)(2 x+3
\end{aligned}
$$

15c) $f(x)=0$

$$
\begin{array}{ccc}
(x-6)(3 x-4)(2 x+5)=0 \\
x-6=0 & 3 x-4=0 & 2 x+5=0 \\
x=6 & 3 x=4 & 2 x=-5 \\
& x=\frac{4}{3} & \left.x=\frac{-5}{2} \quad \right\rvert\, x=6, \frac{4}{3}, \frac{5}{2}
\end{array}
$$

a) use your graphing calculator, or the rational root theorem to find a x-intercept of the polynomial
b) use synthetic division to completely factor the polynomial
c) Use your answer to part a to solve $f(x)=0$
17) $f(x)=x^{3}-3 x^{2}+4 x-12$

17a) $x=3$
17b)

$$
\begin{aligned}
& \text { b) } 3 \left\lvert\, \begin{array}{cccc}
1 & -3 & 4 & -12 \\
3 & 0 & 12 \\
1 & 0 & 4 & 0 \\
x^{3}-3 x^{2}+4 x-12 & =(x-3)\left(x^{2}+4\right)
\end{array}\right.
\end{aligned}
$$

17c)

$$
\begin{gathered}
(x-3)\left(x^{2}+4\right)=0 \\
x-3=0 \\
x=3 \quad \sqrt{x^{2}+4=0} \\
x= \pm 2 i \\
x=3, \pm 2 i
\end{gathered}
$$

a) use your graphing calculator, or the rational root theorem to find a x-intercept of the polynomial
b) use synthetic division to completely factor the polynomial
c) Use your answer to part a to solve $f(x)=0$
19) $f(x)=x^{3}+4 x^{2}+25 x+100$
(aa) $x=-4$

$$
\begin{aligned}
& \text { (96) }-4 \underbrace{1}_{1} \begin{array}{cccc}
4 & 25 & 100 \\
-4 & 0 & -100
\end{array} \\
& x^{3}+4 x^{2}+25 x+100= \\
& \hline(x+4)\left(x^{2}+25\right)
\end{aligned}
$$

pac)

$$
\begin{gathered}
f(x)=0 \\
(x+4)\left(x^{2}+25\right)=0 \\
x+4=0 \quad x^{2}+25=0 \\
x=-4 \quad \sqrt{x^{2}= \pm-25} \\
x= \pm 5 i \\
x=-4, \pm 5 i
\end{gathered}
$$

